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a b s t r a c t

In this work, Mössbauer spectroscopy and X-ray powder diffraction (XRD) have been employed to study
various types of the point defect formation in B2-structured intermetallic phases of the Fe–Al system as
a function of Al concentration. We present the values of the 57Fe isomer shift and quadruple splitting
for the components describing the point defect in the local environment of a Mössbauer nuclide. The
concentrations of Fe vacancies and anti-site Fe atoms substituting Al (Fe-AS) are determined. The results
show that an increase in Al content causes an increase in vacancy and Fe-AS concentrations.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

Iron aluminides represent an intriguing class of new materials:
hey offer a good combination of mechanical properties, as high
pecific strength/weight ratio, excellent corrosion and oxidation
esistance and low raw material costs [1–3], which make them
otential candidates for the substitution of ferrite stainless steel

n applications at moderate to high temperatures. The extensive
echnological application of iron aluminides, however, is impaired
y their low room temperature tensile ductility. The development
f new, more ductile Fe–Al alloys depends on a thorough under-
tanding of their deformation mechanisms in relation to the defect
tructure in these materials. Experimental as well as theoretical
tudies [1–6,9,10,12–19] suggest that point defects in iron alu-
inides present a complex structure, especially of triple defect

ype.
This paper describes the Mössbauer spectroscopy and X-ray
owder diffraction (XRD) studies of point defect formation in FeAl
2-structured intermetallic phases of the Fe–Al system. Mössbauer
pectra are analyzed using a model [9] according to which the
acancies in the Fe-sublattice and Fe anti-site atoms substituting
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l (Fe-AS) in atomic shells close to the probe atom, influence the
somer shift and quadrupole splitting of individual spectrum com-
onents. The concentrations of point defects are determined from
he intensities of these components and they are correlated with
hanges in the Al content.

. Experimental details

The chemical compositions of the investigated alloys are presented in Table 1.
he samples were obtained from Armco iron, aluminum of 99.99% purity, and small
mounts of other additives (Mo, Zr, B and C) in order to improve the thermal and
echanical properties of the alloys. The ingots were prepared by melting using

pinel Al2O3 × MgO crucibles in an induction furnace at 10−2 torr. The ingots were
e-melted three times to insure homogeneity, and they were annealed in a vacuum
urnace for 48 h and then cooled down slowly in the furnace. The phase analysis
as carried out by applying X-ray diffraction using a X-ray Philips diffractometer

quipped with graphite monochromator using Cu K-� radiation on rotating sam-
les. The selected X-ray diffraction patterns are presented in Fig. 1. The features of
2-type structure prevail in the diffraction spectra. Lattice constant parameters and

ong-range order parameters determined by Rietveld refinement method show a
endency to increase with an increase in aluminum contents in the samples. The
7Fe Mössbauer spectra were recorded in transmission geometry at room tempera-

ure by means of a constant-acceleration spectrometer of the standard design. The
4.4 keV gamma rays were provided by a 50 mCi source of 57Co/Rh. Hyperfine param-
ters of the investigated spectra are related to the �-Fe standard. The experimental
pectrum shape was described with a transmission integral calculated according to
he numerical Gauss–Legandre’s procedure [11] which enables the determination
f real intensities of the as fitted components.
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Table 1
Chemical compositions of the investigated materials [at.%].

Contents [%] I II

Fe 61.64 54.64
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Table 2
Values of the hyperfine parameters (IS, QS) and A – sub-spectra area.

Samples Component ISa,b [mm/s] QSa [mm/s] A [%]

Fe63Al38
b L-I 0.19 83

L-II 0.06 14
Q-III 0.04 0.25 1.9
Q-IV 0.23 0.13 1.1

Fe55Al45
b L-I 0.24 85

L-II 0.07 11.7
Q-III 0.05 0.22 2.1
Q-IV 0.21 0.17 1.2

a Error estimated from the fitting procedure is equal ±0.005.
b Relative to the �-Fe foil at room temperature.

Table 3
Values of vacancy and anti-site atom Fe-AS concentrations in the samples of B2-
ordered FeAl determined by Mössbauer spectroscopy investigations.

Estimated phase
composition

Vacancy concentration VFe [%]a Concentration Fe-AS [%]b

F
F

l 38 45

dditions Mo – 0.20; Zr – 0.05; C – 0.1; B – 0.01

. Results and discussion

The selected Mössbauer spectra are presented in Fig. 2. All Möss-
auer spectra were fitted using the model proposed by Bogner et
l. [7]. The Mössbauer spectrum of the Fe55Al45 sample fitted with
his model is shown in Fig. 2. According to this model, the spectrum
ontains four components describing different local environments
f a 57Fe nuclide. The first component (I) – a single line – represents
n ordered B2 structure. The second component (II) – a single line
which approximates an unresolved quadruple doublet) – relates
o the case when the Mössbauer Fe nuclide is located in a corner
f the cubic centered unit cell, and an Fe-AS atom is situated in the
enter of this unit cell. The third component (III) – a doublet of lines
which approximates an unresolved Zeeman sextet) – corresponds

o a Fe atom located in the Fe-AS position. The fourth component
IV) – also a quadruple doublet of lines – represents the case of a
acancy in the near Fe surrounding.

ig. 1. X-ray diffraction patterns of Fe62Al38 and Fe55Al45 samples annealed at
000 ◦C for 48 h.

Fig. 2. The 57Fe Mössbauer transmission spectra for investigated alloys.
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e62Al38 0.04 1.9
e55Al45 0.05 2.1

a Error estimated is equal to ±0.006.
b Error estimated is equal to ±0.05.

Table 2 presents the evolution of the isomer shift (IS) values
nd quadruple splitting (QS) of the spectra components depend-
ng on the aluminum concentration. Similar values of the IS and QS
or the components describing the ordered B2 structure and the
oint defect which revealed in theoretical calculations [20] and
xperiments [8–9,12,16–17]. The values of vacancy and anti-site
tom concentrations found using the described model are shown
n Table 3. In order to estimate the concentration of vacancies
n the Fe-sublattice, the intensity of a sub-spectrum was divided
y 26 [9]. The obtained values of vacancy concentrations and
e-AS show an increase with increasing Al content, confirming
he results of theoretical calculations [13] and some experimen-
al data [9,10,16–17,19]. According to the literature [3–6,9,10,12,14],
he vacancies in the Fe-sublattice VFe are the dominant type of
oint defects in B2 FeAl alloys (may be organized in triple defects,

.e. two vacancies and an anti-site atom [5,10]). Vacancy forma-
ion in Fe-rich Fe–Al alloys has been studied by Schaefer et al. [19]
sing the positron lifetime technique. They found that the thermal
acancy concentration is about 2.3 × 10−5 at 600 ◦C, increasing to
bout 1.3 × 10−3 at 900 ◦C. We also carried out a study of vacancies
ormation in alloys I and II (see Table 1) as a function of Al concen-
ration [19]. The results show that the total concentration of point
efects is so high that the positrons were exclusively trapped. In
lloys with more then 38% Al, vacancies in the Al sublattice (VAl)
re formed in a minor amount, in comparison to the vacancies in
he Fe-sublattice (VFe). The values of vacancies concentrations in
he samples containing microadditions (I and II – see Table 1), esti-

ated in this work, are slightly lower than vacancies concentrations
n FexAl1−x (x > 0.5) alloys, calculated and reported in [13] and those
f experimental data published in [9,10].

Those results were correlated to the electron structure modi-
cation in the examined materials by the microadditions. Such a
haracter of the defect structure, mainly the lower concentration
f vacancies in the alloys modified by microadditions, confirms the
dvisability of their introduction in order to improve plasticity of
hese materials.
. Conclusions

Point defect concentrations in a series of intermetallic B2-
rdered FeAl alloys were determined by applying Mössbauer
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pectroscopy. It was found that the investigated materials contain
igh concentrations of point defects, which significantly increase
ith an increase in aluminum content. The values of the vacan-

ies concentrations in the FexAl1−x (x > 0.5) samples containing
icroadditions, estimated in this work, are slightly lower than
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y other authors. Such a change in the defect structure – mainly
he lower concentration of vacancies in the alloys modified with

icroadditions – confirms the advisability for improving the plas-
icity of these materials.

cknowledgement

The work was supported by the State Committee of Scientific
esearch, grant no. PB-581/T/2006.
eferences

[1] J.L. Jordan, S.C. Deevi, Intermetallics 11 (2003) 507.
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